Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(23)2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38067126

RESUMO

Tissue regeneration is an essential requirement for wound healing and recovery of organs' function. It has been demonstrated that wound healing can be facilitated by activating paracrine signaling mediated by exosomes secreted from stem cells, since exosomes deliver many functional molecules including growth factors (GFs) and neurotrophic factors (NFs) effective for tissue regeneration. In this study, an exosome-rich conditioned medium (ERCM) was collected from human amniotic membrane stem cells (AMSCs) by cultivating the cells under a low oxygen tension (2% O2 and 5% CO2). The contents of GFs and NFs including keratinocyte growth factor, epidermal growth factor, fibroblast growth factor 1, transforming growth factor-ß, and vascular endothelial growth factor responsible for skin regeneration were much higher (10-30 folds) in the ERCM than in normal conditioned medium (NCM). In was found that CM-DiI-labeled exosomes readily entered keratinocytes and fibroblasts, and that ERCM not only facilitated the proliferation of keratinocytes in normal condition, but also protected against H2O2 cytotoxicity. In cell-migration assay, the scratch wound in keratinocyte culture dish was rapidly closed by treatment with ERCM. Such wound-healing effects of ERCM were confirmed in a rat whole skin-excision model: i.e., the wound closure was significantly accelerated, remaining minimal crusts, by topical application of ERCM solution (4 × 109 exosome particles/100 µL) at 4-day intervals. In the wounded skin, the deposition of collagens was enhanced by treatment with ERCM, which was supported by the increased production of collagen-1 and collagen-3. In addition, enhanced angiogenesis in ERCM-treated wounds was confirmed by increased von Willebrand factor (vWF)-positive endothelial cells. The results indicate that ERCM from AMSCs with high concentrations of GFs and NFs improves wound healing through tissue regeneration not only by facilitating keratinocyte proliferation for skin repair, but also activating fibroblasts for extracellular matrix production, in addition to the regulation of angiogenesis and scar tissue formation.


Assuntos
Células Endoteliais , Exossomos , Humanos , Ratos , Animais , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Células Endoteliais/metabolismo , Exossomos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Âmnio/metabolismo , Angiogênese , Peróxido de Hidrogênio/farmacologia , Cicatrização/fisiologia , Células-Tronco , Colágeno/farmacologia , Fator de Crescimento Epidérmico/farmacologia
2.
Nutrients ; 15(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37242259

RESUMO

Oxidative stress and inflammation are basic pathogenic factors involved in tissue injury and pain, as well as acute and chronic diseases. Since long-term uses of synthetic steroids and non-steroidal anti-inflammatory drugs (NSAIDs) cause severe adverse effects, novel effective materials with minimal side effects are required. In this study, polyphenol content and antioxidative activity of rosebud extracts from 24 newly crossbred Korean roses were analyzed. Among them, Pretty Velvet rosebud extract (PVRE) was found to contain high polyphenols and to show in vitro antioxidative and anti-inflammatory activities. In RAW 264.7 cells stimulated with lipopolysaccharide (LPS), PVRE down-regulated mRNA expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and thereby decreased nitric oxide (NO) and prostaglandin E2 (PGE2) production. In a subcutaneous air-pouch inflammation model, treatment with PVRE decreased λ-carrageenan-induced tissue exudation, infiltration of inflammatory cells, and inflammatory cytokines such as tumor necrosis factor-α and interleukin-1ß concentrations, as achieved with dexamethasone (a representative steroid). Notably, PVRE also inhibited PGE2, similar to dexamethasone and indomethacin (a representative NSAID). The anti-inflammatory effects of PVRE were confirmed by microscopic findings, attenuating tissue erythema, edema, and inflammatory cell infiltration. These results indicate that PVRE exhibits dual (steroid- and NSAID-like) anti-inflammatory activities by blocking both the iNOS-NO and COX-2-PG pathways, and that PVRE could be a potential candidate as an anti-inflammatory material for diverse tissue injuries.


Assuntos
Antioxidantes , Extratos Vegetais , Humanos , Extratos Vegetais/uso terapêutico , Ciclo-Oxigenase 2/metabolismo , Antioxidantes/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Anti-Inflamatórios não Esteroides/uso terapêutico , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Dexametasona/efeitos adversos , Óxido Nítrico/metabolismo , Lipopolissacarídeos/farmacologia
3.
Int J Mol Sci ; 24(9)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37175778

RESUMO

Glaucoma is one of the most devastating eye diseases, since the disease can develop into blindness and no effective therapeutics are available. Although the exact mechanisms and causes of glaucoma are unknown, increased intraocular pressure (IOP) has been demonstrated to be an important risk factor. Exosomes are lipid nanoparticles secreted from functional cells, including stem cells, and have been found to contain diverse functional molecules that control body function, inhibit inflammation, protect and regenerate cells, and restore damaged tissues. In the present study, exosome-rich conditioned media (ERCMs) were attained via hypoxic culture (2% O2) of human amniotic membrane mesenchymal stem cells (AMMSCs) and amniotic membrane epithelial stem cells (AMESCs) containing 50 times more exosome particles than normoxic culture (20% O2) medium (NCM). The exosome particles in ERCM were confirmed to be 77 nm in mean size and contain much greater amounts of growth factors (GFs) and neurotrophic factors (NFs) than those in NCM. The glaucoma-therapeutic effects of ERCMs were assessed in retinal cells and a hypertonic (1.8 M) saline-induced high-IOP animal model. CM-DiI-labeled AMMSC exosomes were found to readily penetrate the normal and H2O2-damaged retinal ganglion cells (RGCs), and AMMSC-ERCM not only facilitated retinal pigment epithelial cell (RPEC) proliferation but also protected against H2O2- and hypoxia-induced RPEC insults. The IOP of rats challenged with 1.8 M saline increased twice the normal IOP (12-17 mmHg) in a week. However, intravitreal injection of AMMSC-ERCM or AMESC-ERCM (3.9-4.5 × 108 exosomes in 10 µL/eye) markedly recovered the IOP to normal level in 2 weeks, similar to the effect achieved with platelet-derived growth factor-AB (PDGF-AB, 1.5 µg), a reference material. In addition, AMMSC-ERCM, AMESC-ERCM, and PDGF-AB significantly reversed the shrinkage of retinal layers, preserved RGCs, and prevented neural injury in the glaucoma eyes. It was confirmed that stem cell ERCMs containing large numbers of functional molecules such as GFs and NFs improved glaucoma by protecting retinal cells against oxidative and hypoxic injuries in vitro and by recovering IOP and retinal degeneration in vivo. Therefore, it is suggested that stem cell ERCMs could be a promising candidate for the therapy of glaucoma.


Assuntos
Exossomos , Glaucoma , Ratos , Humanos , Animais , Pressão Intraocular , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Exossomos/metabolismo , Âmnio/metabolismo , Peróxido de Hidrogênio/metabolismo , Glaucoma/metabolismo , Retina/metabolismo , Fatores de Crescimento Neural/metabolismo , Células-Tronco/metabolismo , Modelos Animais de Doenças
4.
Cell Transplant ; 30: 9636897211035409, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34318707

RESUMO

Stamina-enhancing effects of human adipose derived stem cells (hADSCs) were investigated in young Sprague-Dawley rats. Ten-day-old male rats were transplanted intravenously (IV) or intracerebroventricularly (ICV) with hADSCs (1 × 106 cells/rat), and physical activity was measured by locomotor activity and rota-rod performance at post-natal day (PND) 14, 20, 30, and 40, as well as a forced swimming test at PND 41. hADSCs injection increased the moving time in locomotor activity, the latency in rota-rod performance, and the maximum swimming time. For the improvement of physical activity, ICV transplantation was superior to IV injection. In biochemical analyses, ICV transplantation of hADSCs markedly reduced serum creatine phosphokinase, lactate dehydrogenase, alanine transaminase, and muscular lipid peroxidation, the markers for muscular and hepatic injuries, despite the reduction in muscular glycogen and serum triglycerides as energy sources. Notably, hADSCs secreted brain-derived neurotrophic factor (BDNF) and nerve growth factor in vitro, and increased the level of BDNF in the brain and muscles in vivo. The results indicate that hADSCs enhance physical activity including stamina not only by attenuating tissue injury, but also by strengthening the muscles via production of BDNF.


Assuntos
Tecido Adiposo/metabolismo , Células-Tronco/metabolismo , Animais , Diferenciação Celular , Humanos , Masculino , Condicionamento Físico Animal , Ratos , Ratos Sprague-Dawley
5.
Cancers (Basel) ; 13(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807895

RESUMO

Enhanced Yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ) signaling is correlated with the extraprostatic extension of prostate cancer. However, the mechanism by which YAP/TAZ signaling becomes hyperactive and drives prostate cancer progression is currently unclear. In this study, we revealed that higher expression of CCM1, which is uniquely found in advanced prostate cancer, is inversely correlated with metastasis-free and overall survival in patients with prostate cancer. We also demonstrated that CCM1 induces the metastasis of multiple types of prostate cancer cells by regulating YAP/TAZ signaling. Mechanistically, CCM1, a gene mutated in cerebral cavernous malformation, suppresses DDX5, which regulates the suppression of YAP/TAZ signaling, indicating that CCM1 and DDX5 are novel upstream regulators of YAP/TAZ signaling. Our findings highlight the importance of CCM1-DDX5-YAP/TAZ signaling in the metastasis of prostate cancer cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...